• Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45–58 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoa, E. M. & Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 28, 574–581 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klungland, A. & Dahl, J. A. Dynamic RNA modifications in disease. Curr. Opin. Genet. Dev. 26, 47–52 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 1897 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motorin, Y. & Helm, M. tRNA stabilization by modified nucleotides. Biochemistry 49, 4934–4944 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chernyakov, I., Whipple, J. M. & Kotelawala, L. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1. Genes Dev. 22, 1369–1380 (2008).

  • Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA 24, 1305–1313 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, M. et al. m5U54 tRNA hypomodification by lack of TRMT2A drives the generation of tRNA-derived small RNAs. Int. J. Mol. Sci. 22, 2941 (2021).

  • Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases. Trends Mol. Med. 20, 306–314 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaffrath, R. & Leidel, S. A. Wobble uridine modifications—a reason to live, a reason to die?! RNA Biol. 14, 1209–1222 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Crécy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res. 47, 2143–2159 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Crécy-Lagard, V. & Jaroch, M. Functions of bacterial tRNA modifications: from ubiquity to diversity. Trends Microbiol. 29, 41–53 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Motorin, Y. & Grosjean, H. tRNA Modification. (Wiley, 2001).

  • Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gustilo, E. M., Vendeix, F. A. & Agris, P. F. tRNA’s modifications bring order to gene expression. Curr. Opin. Microbiol. 11, 134–140 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boccaletto, P. & Bagiński, B. MODOMICS: an operational guide to the use of the RNA modification pathways database. Methods Mol. Biol. 2284, 481–505 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajek, M. P., Woźniak, T., Sprinzl, M., Jaruzelska, J. & Barciszewski, J. T-psi-C: user friendly database of tRNA sequences and structures. Nucleic Acids Res. 48, D256–D260 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Salowe, S. P., Wiltsie, J., Hawkins, J. C. & Sonatore, L. M. The catalytic flexibility of tRNAIle-lysidine synthetase can generate alternative tRNA substrates for isoleucyl-tRNA synthetase. J. Biol. Chem. 284, 9656–9662 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranjan, N. & Rodnina, M. V. tRNA wobble modifications and protein homeostasis. Translation (Austin) 4, e1143076 (2016).

    PubMed 

    Google Scholar
     

  • Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behm-Ansmant, I., Branlant, C. & Motorin, Y. The Saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Ψ27/28-synthase. RNA 13, 1641–1647 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giegé, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sylvers, L. A., Rogers, K. C., Shimizu, M., Ohtsuka, E. & Söll, D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32, 3836–3841 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki T. The ‘polysemous’ codon—a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J. 16, 1122–1134 (1997).

  • Niimi, T. et al. Recognition of the anticodon loop of tRNAIle1 by isoleucyl-tRNA synthetase from Escherichia coli. Nucleosides and Nucleotides 13, 1231–1237 (1994).

  • Agris, P. F. et al. Celebrating wobble decoding: half a century and still much is new. RNA Biol. 15, 537–553 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Machnicka, M. A., Olchowik, A., Grosjean, H. & Bujnicki, J. M. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 11, 1619–1629 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • El Yacoubi, B., Bailly, M. & de Crécy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafels-Ybern, À. et al. The expansion of inosine at the wobble position of tRNAs, and its role in the evolution of proteomes. Mol. Biol. Evol. 36, 650–662 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoa, E. M., Pavon-Eternod, M., Pan, T., Ribas & de Pouplana, L. A role for tRNA modifications in genome structure and codon usage. Cell 149, 202–213 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takai, K. & Yokoyama, S. Roles of 5‐substituents of tRNA wobble uridines in the recognition of purine‐ending codons. Nucleic Acids Res. 31, 6383–6391 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackman, J. E. & Alfonzo, J. D. Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip. Rev. RNA 4, 35–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soma, A. et al. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell 12, 689–698 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krüger, M. K., Pedersen, S., Hagervall, T. G. & Sørensen, M. A. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J. Mol. Biol. 284, 621–631 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Näsvall, S. J., Chen, P. & Björk, G. R. The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. RNA 13, 2151–2164 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Näsvall, S. J., Chen, P. & Björk, G. R. The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAProcmo5UGG promotes reading of all four proline codons in vivo. RNA 10, 1662–1673 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weixlbaumer, A. et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat. Struct. Mol. Biol. 14, 498–502 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson, E. M. & Alexander, R. W. Bacterial wobble modifications of NNA-decoding tRNAs. IUBMB Life 71, 1158–1166 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueda, Y. et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 7, 42271 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47, 2533–2545 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, C. T. Y. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, C. T. Y. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, W. et al. Trm9-catalyzed tRNA modifications regulate global protein expression by codon-biased translation. PLoS Genet. 11, e1005706 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, A. et al. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 11, 3656–3665 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, T. L., Cooper, I. A., Wray, G. W., Ironside, P. N. & Matthews, J. Transfer RNA and transfer RNA methylase activity in spleens of patients with Hodgkin’s disease and histiocytic lymphoma. J. Natl Cancer Inst. 56, 215–219 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bullinger, D. et al. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling. BMC Biochem. 8, 25 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frickenschmidt, A. et al. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers 13, 435–449 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapino, F. et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605–609 (2018).

  • Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Signal. 11, eaat6409 (2018).

  • Pang, Y. L. J., Abo, R., Levine, S. S. & Dedon, P. C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res. 42, e170 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott, J. A., Francklyn, C. S. & Robey-Bond, S. M. Transfer RNA and human disease. Front. Genet. 5, 158 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grewal, S. S. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim. Biophys. Acta 1849, 898–907 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez-Alias, X., Benisty, H., Schaefer, M. H. & Serrano, L. Translational efficiency across healthy and tumor tissues is proliferation-related. Mol. Syst. Biol. 16, e9275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thüring, K., Schmid, K., Keller, P. & Helm, M. Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry. Methods. 107, 48–56 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nakayama, H. et al. Method for direct mass-spectrometry-based identification of monomethylated RNA nucleoside positional isomers and its application to the analysis of leishmania rRNA. Anal. Chem. 91, 15634–15643 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarin, L. P. et al. Nano LC–MS using capillary columns enables accurate quantification of modified ribonucleosides at low femtomol levels. RNA 24, 1403–1417 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, D. et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat. Protoc. 9, 828–841 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellner, S. et al. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 42, e142 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espadas, G. et al. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. J. Chromatogr. A 1665, 462803 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikcevic, I., Wyrzykiewicz, T. K. & Limbach, P. A. Detecting low-level synthesis impurities in modified phosphorothioate oligonucleotides using liquid chromatography–high resolution mass spectrometry. Int. J. Mass Spectrom. 304, 98–104 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heiss, M., Borland, K., Yoluç, Y. & Kellner, S. Quantification of modified nucleosides in the context of NAIL-MS. Methods Mol. Biol. 2298, 279–306 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helm, M., Schmidt-Dengler, M. C., Weber, M. & Motorin, Y. General principles for the detection of modified nucleotides in RNA by specific reagents. Adv. Biol. (Weinh). 5, e2100866 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

  • Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. F. et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol. 39, 978–988 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erber, L. et al. LOTTE-seq (long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3′-CCA end for high-throughput sequencing. RNA Biol. 17, 23–32 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arimbasseri, A. G. et al. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet. 11, e1005671 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander Ebhardt, H. et al. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res. 37, 2461–2470 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner, S. et al. Machine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomes. Nucleic Acids Res. 48, 3734–3746 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryvkin, P. et al. HAMR: high-throughput annotation of modified ribonucleotides. RNA 19, 1684–1692 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motorin, Y., Muller, S., Behm‐Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription‐based methods. Methods Enzymol. 425, 21–453 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. A high-throughput screening method for evolving a demethylase enzyme with improved and new functionalities. Nucleic Acids Res. 49, e30 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henley, R. Y. et al. Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Lett. 16, 138–144 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using Mycobacterium smegmatis porin A. Nat. Commun. 12, 3368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. M., Abu-Shumays, R., Akeson, M. & Bernick, D. L. Capture, unfolding, and detection of individual tRNA molecules using a nanopore device. Front. Bioeng. Biotechnol. 3, 91 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, N. K. et al. Direct nanopore sequencing of individual full length tRNA strands. ACS Nano. 15, 16642–16653 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workman, R. E., Tang, A. D., Tang, P. S., Jain, M. & Tyson, J. R. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

  • Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gleeson, J. et al. Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. Nucleic Acids Res. 50, e19 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saville, L. et al. NERD-seq: a novel approach of nanopore direct RNA sequencing that expands representation of non-coding RNAs. Preprint at bioRxiv (2021).

  • Li, R. et al. Direct full-length RNA sequencing reveals unexpected transcriptome complexity during Caenorhabditis elegans development. Genome Res. 30, 287–298 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulroney, L. et al. Identification of high confidence human poly(A) RNA isoform scaffolds using nanopore sequencing. RNA 28, 162–176 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bullard, D. R. & Bowater, R. P. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398, 135–144 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res. 49, e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abuín, J. M., Pichel, J. C., Pena, T. F. & Amigo, J. BigBWA: approaching the Burrows–Wheeler aligner to Big Data technologies. Bioinformatics 31, 4003–4005 (2015).

    PubMed 

    Google Scholar
     

  • Stephenson, W. et al. Direct detection of RNA modifications and structure using single molecule nanopore sequencing. Cell Genomics 2, 100097 (2022).

  • Leger, A. et al. RNA modifications detection by comparative nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, H. F., Motorin, Y., Planta, R. J. & Grosjean, H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of Ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493–4499 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. et al. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling. Genome Biol. 22, 330 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavakoli, S. et al. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing. Nat. Commun. 14, 334 (2023).

  • Motorin, Y. et al. The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA 4, 856–869 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massenet, S. et al. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase Pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol. Cell. Biol. 19, 2142–2154 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behm-Ansmant, I. et al. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. RNA 12, 1583–1593 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behm-Ansmant, I. et al. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite–multisubstrate RNA:Ψ-synthase also acting on tRNAs. RNA 9, 1371–1382 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, S., Dedon, P. C. & Waldor, M. K. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat. Chem. Biol. 16, 964–972 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z.-X. et al. Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 49, 13045–13061 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, M. et al. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res. 43, 10952–10962 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barraud, P. et al. Time-resolved NMR monitoring of tRNA maturation. Nat. Commun. 10, 3373 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alings, F., Sarin, L. P., Fufezan, C., Drexler, H. C. A. & Leidel, S. A. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 21, 202–212 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178–192 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant review with the Integrative Genomics Viewer. Cancer Res. 77, e31–e34 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czech, A., Wende, S., Mörl, M., Pan, T. & Ignatova, Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 9, e1003767 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahlab, S., Tuller, T. & Linial, M. Conservation of the relative tRNA composition in healthy and cancerous tissues. RNA 18, 640–652 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, P. & Gilchrist, M. A. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc. Natl Acad. Sci. USA 108, 10231–10236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, E. N. & Powell, J. R. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol. 45, 514–523 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randerath, K., Agrawal, H. P. & Randerath, E. tRNA alterations in cancer. Recent Results Cancer Res. 84, 103–120 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, P. et al. Genome-wide profiling of transfer RNAs and their role as novel prognostic markers for breast cancer. Sci Rep. 6, 32843 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gustafsson, H. T. et al. Deep sequencing of yeast and mouse tRNAs and tRNA fragments using OTTR. Preprint at bioRxiv (2022).

  • Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agris, P. F., Narendran, A., Sarachan, K., Väre, V. Y. P. & Eruysal, E. The importance of being modified: the role of RNA modifications in translational fidelity. Enzymes 41, 1–50 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L., Marcus, E., D’Silva, S. & Phizicky, E. M. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA 23, 406–419 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guy, M. P. & Phizicky, E. M. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 11, 1608–1618 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grosjean, H., Droogmans, L., Roovers, M. & Keith, G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol. 425, 55–101 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Carey, M. F., Peterson, C. L. & Smale, S. T. The primer extension assay. Cold Spring Harb. Protoc. 2013, 164–173(2013).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, T., Ikeuchi, Y., Noma, A., Suzuki, T. & Sakaguchi, Y. Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods Enzymol. 425, 211–229 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiss, M., Hagelskamp, F., Marchand, V., Motorin, Y. & Kellner, S. Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo. Nat. Commun. 12, 389 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, S. M., Fay, M. M. & Ivanov, P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett. 592, 2828–2844 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, M., Fidalgo, A., Varanda, A. S., Oliveira, C. & Santos, M. A. S. tRNA deregulation and its consequences in cancer. Trends Mol. Med. 25, 853–865 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, A. et al. Accurate mapping of tRNA reads. Bioinformatics 34, 2339 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Saint-Léger, A. et al. Saturation of recognition elements blocks evolution of new tRNA identities. Sci. Adv. 2, e1501860 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson, J. R. & Uhlenbeck, O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl Acad. Sci. USA 85, 1033–1037 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermand, D. Anticodon wobble uridine modification by elongator at the crossroad of cell signaling, differentiation, and diseases. Epigenomes 4, 7 (2020).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. (2022).

  • Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB55684

  • Lucas, M. C. et al. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. GitHub.

  • Leave a Reply

    Your email address will not be published. Required fields are marked *